Parents' Calculation Policy Workshop

Key Stage 2

13th November 2019

Miss Jane

Whiterose and the Calculation Policy

- Mastery of Maths
- Adapted Whiterose
- Concrete
- Pictorial
- Abstract
- Discussion with staff

2 1 3 Concrete **Pictoral** 41 + 8 Children to partition into tens TO + O using base 10. and ones. 41 + 8 Continue to develop understanding of partitioning and place value. 41 + 8 41 8

Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' is the same as

1 + 8 = 9

40 + 9 = 49

Abstract

Addition

Concrete

1

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as

TO + TO using base 10. Continue to develop an understanding of partitioning and place value. 36 + 25

2 Pictoral	3 Abstract
Children to partition into tens and ones. 36 + 25	36+ 25 =
R	36 <u>+25</u> <u>61</u>

Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as

Conceptual Variation; different ways to solve TO + TO . + . Word problems (21+34) 21 In year 3, there are 21 children, +34and in year 4, there are 34 Missing digit problems children. How many children are there in total? 21 34 = 21 + 3421 + 34 = 55 Prove it Calculate the sum of twenty-one and _5 thirty-four.

Subtraction

Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

1 Concrete	2 Pictorial	3 Abstract
Column method using base 10. 48-7	Children to represent the base 10 pictorially.	Column method or children could count back 7.
10s 1s 10s 1s 4 1		48 - 7 41

Subtraction

Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

2 1 3 Concrete Pictorial Abstract Represent the place value Formal column method. Column method using dienes. counters pictorially; remembering Children must understand what 234 - 88to show what has been has happened when they have crossed out digits. exchanged. Η Т 0 100 200 30 10 + 488 10 + 20

80

8

Subtraction

Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

Subtraction

Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

Conceptual Variation; different ways to ask children to solve 391-186

Multiplication Key Language: double, times, multiplied by, the product of, groups of, lots of equal groups.

1 Concrete	2 Pictorial	3 Abstract
Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$	Children to represent the arrays pictorially (e.g. theatre rows).	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5

Multiplication Key Language: double, times, multiplied by, the product of, groups of, lots of equal groups.

1 Concrete	2 Pictorial	3 Abstract	
Partition to multiply using base 10 (dienes)	Children to represent the concrete manipulatives	Children to be encouraged to show the steps they have taken.	
15 x 4	pictorially.	X 10 5 4 40 20	
	10 x4 5	Then, 40 + 20 = 60	

Multiplication

Key Language: double, times, multiplied by, the product of, groups of, lots of equal groups.


```
2
 1
Formal column method
go straight from grid method to column method 3 × 23 and 23 x 6
                                                                                         23
                                                                                                            23
Children may need to record what it is they are doing to show
understanding.
3 \times 233 \times 20 = 60
3 \times 3 = 9
      3
             60 + 9 = 69
20
```

Multiplication

Key Language: double, times, multiplied by, the product of, groups of, lots of equal groups.

Conceptual Variation; different ways to solve 6 x 23

Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? Find the product of 6 and 23 6 × 23 =

= 6 × 23

1 Concrete	2 Pictorial	3 Abstract	
2d ÷ 1d with remainders using sharing. 13 ÷ 3	Children to represent the saring pictorially	 13 ÷ 4 – 3 remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over' 	
	There are 4 groups with 1 left over		

1 Concrete	3 Abstract	
Division using chunking method 42 ÷ 3	Children need to be able to use chunking method to make sense of place value when sharing.	
	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

1 Concrete	3 Abstract
Short division	
615 ÷ 5	Children calculate using the short division scaffold. 123 5^{123} $6^{1}1^{1}5$

Abstract				
2544 ÷12	12 2544 <u>24</u> 1	$ \begin{array}{r} \begin{array}{r} 0 & 2 & 1 \\ 2 & 5 & 4 & 4 \\ $	$ \begin{array}{r} 0 & 2 & 1 & 2 \\ 12 & 2544 \\ 24 \\ 24 \\ $	

Key Language: Share, group, divide, divided by, half.

Conceptual Variation; different ways to solve 6 x 23

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

Homework Ideas

- Number plates making a number sentence
- Shapes in the environment
- Shopping weighing/counting
- Travelling estimating time and distance

Thank you!

If you have any further questions or queries please contact:

jnicholl@vhprimary.com

srobinson@vhprimary.com