VHPS Calculation Policy - Summer 2019

ADDITION: Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' is the same as

Concrete		Pictorial
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1 s column, exchange for 1 ten, when there are 10 tens in the 10 s columnexchange for 1 hundred. $(243+368)$

Children to partition into hundreds, tens and ones.

 (243 + 368)

Conceptual Variation; different ways to solve TO + TO

Word problems (21+34)
In year 3, there are 21 children, and in year 4, there are 34 children. How many children are there in total?
$21+34=55$. Prove it.

21

\qquad Missing digit problems

$\square=21+34$	21
Calculate the sum of twenty-one and thirty-four.	$+3 \square$

VHPS Calculation Policy - Summer 2019

SUBTRACTION: Take away, less than, the difference, subtract, minus, fewer, decrease

Concrete	Pictorial	Abstract
		-1 $=4.3$
氖-里	\%	A
Counting back (using number lines or number tracks) children start with 6 and count back 2.		Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use
-		
	Enataboueal.	H- mbll\|

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
$\begin{aligned} & \text { Making } 10 \text { using } \\ & \text { ten frames } \\ & \text { (and/or dienes) } \\ & 14-5 \end{aligned}$	Children to present the ten frame pictorially (and or dienes) and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $14-4=10$ $10-1=9$

Column method
using base 10. 48-7
Children to represent the base 10 pictorially.

Column method or children could count back 7 .

Column method using base 10 and having to exchange. 41-26

T	O
$30 / 40$	$10+1$
20	6

Represent the place value counters pictorially; remembering to show what has been exchanged.
Represent the base 10 pictorially, remembering to show the exchange.

H	T	O
100200	$10+30$	$10+4$
	20	
	$\mathbf{8 0}$	8

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.

Formal colum method. Children must understand what has happened when they have crossed out digits.

Column method using dienes.
234-88

	Raj spent $£ 391$, Timmy spent £186. How much more did Raj spend? Calculate the difference between 391 and 186.	$\begin{gathered} \square=391-186 \\ 391 \\ \underline{-186} \end{gathered}$ What is 186 less than $391 ?$	Missing digit calculations

VHPS Calculation Policy - Summer 2019

MULTIPLICATION: double, times, multiplied by, the product of, groups of, lots of equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 $4+4+4$ There are 3 equal groups, with 4 in each group	Children to represent the practical resources in a picture.	$\begin{gathered} 3 \times 4=12 \\ 4+4+4=12 \end{gathered}$
Number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ Children to represent the arrays pictorially (e.g. theatre rows). 00 0 00	Children to be able to use an array to write a range of calculations e.g. $\left\lvert\, \begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}\right.$
	Children to be encouraged to show the steps they have taken. Then, $40+20=60$
Formal column method go straight from grid method to column method 3×23 and 23×6 Children may need to record what it is they are doing to show understanding. $\begin{array}{ll} 3 \times 23 & 3 \times 20=60 \\ 3 \times 3=9 & \\ 20 & 3 \end{array} 60+9=69$	$\begin{array}{r} 23 \\ \times \quad 3 \\ \times \quad 6 \\ \hline 69 \\ \hline 138 \\ \hline 11 \end{array}$

When children start to multiply 3d $\times 3 \mathrm{~d}$ and $4 \mathrm{~d} \times 2 \mathrm{~d}$ etc., they should be confident with the abstract:	$\begin{array}{r} 124 \\ \times \quad 26 \end{array}$
To get 744 children have solved 6×124.	744
To get 2480 they have solved 20×124.	$\begin{array}{llll} 2 & 4 & 8 & 0 \end{array}$
	$\begin{array}{llll}3 & 2 & 2 & 4\end{array}$
	11
	Answer: 3224

Conceptual Variation; different ways to solve 6×23

Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week?

Find the product of 6 and $236 \times 23=$
$=6 \times 23$
6 23
$\times \quad 23 \times 6$

VHPS Calculation Policy - Summer 2019

DIVISION: Share, group, divide, divided by, half.

2d \div 1d with remainders using sharing. $13 \div 3$	Children to represent the sharing pictorially. There are 3 groups, with 1 left over.	$13 \div 4 \text { - } 3 \text { remainder } 1$ Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4 , with 1 left over'
Division using chunking method $42 \div 3$		Children need to be able to use chunking method to make sense of place value when sharing.
Short division $615 \div 5$		Children calculate using the short division scaffold.

$$
\begin{aligned}
& 12 \stackrel{02}{2544} \\
& \frac{24}{1} \\
& 1 2 \longdiv { \frac { 0 2 1 } { 2 5 4 4 } } \\
& \frac{24}{14} \\
& \frac{12}{2} \\
& \begin{array}{r}
12 \\
24 \\
2454 \\
2
\end{array}
\end{aligned}
$$

Conceptual Variation; different ways to solve 6×23

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

$5 \longdiv { 6 1 5 }$

$615 \div 5=$
「 ${ }^{5} 15 \div 5$

